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Structural Design Space
Exploration Using Principal
Component Analysis
Design space exploration (DSE) is the process whereby a designer seeks to understand
some results across a set of design variations. Structural DSE of turbomachinery compres-
sor blades is often challenging because the large number of design variables make it diffi-
cult to learn the effect that each variable has upon the stress contours. Principal component
analysis (PCA) of the stress contours is used as a way to understand how the stress contours
change over the design space. Two methods are introduced to address the challenge of
understanding how the stress changes over a large number of variables. First, a two-
point correlation is applied to relate the design variables to the scores of each principal
component. Second, a coupling of the stress and coordinate location of each node in
PCA is developed which also indicates how the stress variations relate to geometric vari-
ations. These provide insight to how design variables influence the stress. It is shown
how these methods use PCA as DSE tools to better explore the structural design space of
compressor blades. Better DSE can improve compressor blades and the computational
cost needed for their design. [DOI: 10.1115/1.4047428]

Keywords: computer-aided engineering, data-driven engineering

1 Introduction
Design space exploration (DSE) is the study or analysis of

designs defined by a set of variables which are permitted to vary.
When done well, it can provide powerful insight into the influence
of design variables on the local and global results. Optimization is a
form of DSE which seeks to find a maximum or minimum objective
in a design space subject to constraints. DSE is a broader concept
which seeks to understand and explore the design space. It helps
find optimums, understand sensitivities, and explore new design
concepts. This form of exploration is useful for many types of
design problems. One application is the multidisciplinary design
of turbomachinery compressor blades. A geometry optimized aero-
dynamically may not be structurally feasible. This requires struc-
tural DSE around a proposed aerodynamic design to find a
structurally feasible design.
A challenge of exploring the structural design space of compres-

sor blades is knowing which design variables to vary, and by how
much, to satisfy structural criteria. Compressor blade structural
design often involves many iterations of trying different design var-
iations, based on a proposed aerodynamic geometry, to find one
which is structurally feasible. The structural and aerodynamic
groups iterate together with each group also performing sub-
iterations. This design method has a twofold problem which
limits the ability to find quality, feasible designs. First, the long
solution times required for high fidelity simulations limit the
number of designs which can be explored. Second, a lack of under-
standing about how design variables influence compressor blade
structural results obscures a designer’s knowledge of which
design variables to vary and which regions of the design space to
explore. This may lead to a larger percentage of simulations
being wasted on designs which do not improve the compressor
blade design objectives. Previous research studied improving the

DSE speed for compressor blades by using surrogates to emulate
the blade stress [1,2]. The present research focuses on methods to
understand the relationship between design variables and structural
results to improve DSE. This will help designers understand which
design variables and regions of the design space should be explored.
This research uses principal component analysis (PCA) to develop

methodswhich improve an understanding of compressor blade struc-
tural design spaces. PCA is also known in thefield of turbomachinery
and computational fluid dynamics (CFD) as proper orthogonal
decomposition (POD) [3–5]. It provides the orthogonal variations
in the structural data and scores which represent the magnitude of
those variations for each sample. The orthogonality of the PCs
means that the variations are the most efficient set possible from
the given data. While this paper uses PCA, other latent or spectral
methods may also be used if they provide a set of orthogonal varia-
tions and themagnitude of each variation for each sample.Other such
acceptable methods include exploratory factor analysis or least
squares regression [6,7]. Latent methods which would not work
include hidden Markov models, Isomap, or other non-linear tech-
niques because they do not provide orthogonal vectors which repre-
sent the variations [8]. PCA was selected due to its simplicity and
given that the transformation preserves as much of the variability
as possible within the first few PCs [9]. For DSE of compressor
blades, the samples are design variations from a baseline compressor
blade and the data are structural results from finite element analysis
(FEA). Two methods are used to understand the relationship
between design variables and PCs for high-dimensional spaces.
The first method applies a two-point correlation between design var-
iables and principal component (PC) scores. The secondmethodwas
developed in this research from coupling the node locations and node
stresses in a single PCA. These methods are applied to DSE of the
von Mises stress on blade-alone finite element models of the tran-
sonic Purdue compressor [10]. This compressor bladewas developed
to study transonic aerodynamic effects but has been the subject of
many academic studies, including structural PCA analysis [11].
The nominal design has a height of about 2.0 in, a mean chord of
about 1.9 in, and a mean thickness to chord ratio is about 8%.
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The paper proceeds with a background on DSE and PCA of result
fields. Then, the methods for PCA and the two-point correlation are
described. Following this, the results of the PCA, two-point corre-
lations, and stress and geometry coupling are shown. The results
show PCs of the compressor blade across various design spaces
and how the stated methods relate the variables to the PCs. The dis-
cussion then provides an example to demonstrate how to use these
methods to improve compressor blade DSE.

2 Background
The background covers deficiencies to common practices

of compressor blade DSE, the basics of PCA, and methods
which have been used to better understand turbomachinery with
PCA.

2.1 Design Exploration. Design space exploration of com-
pressor blades is a complicated and computationally expensive
process. It is common to start from a baseline design and rely on
experience to adjust design variables until a desired result is
obtained. For the structural design of compressor blades, each iter-
ation requires FEA with possibly millions of nodes [12]. The long
simulation times and computational expense which accompany
these high fidelity models limit the number of designs which may
be tested. Research has shown that during design exploration,
longer times to reach an acceptable design lead to worse final
designs [13–15]. This means that the simulation times should be
as low as possible and that the designs which are tested should be
chosen well. Knowing which designs to test can be challenging
without an understanding of how each design variable influences
the structural results. While engineering experience can help with
this, that understanding is limited in unfamiliar or complex design
spaces.
More advanced design exploration methods use a design of

experiments (DOEs) to choose which designs to analyze. A DOE,
also known as a sampling plan, seeks to select a set of designs
which are, in some sense, evenly distributed through the design
space [16]. Analysis from the selected samples can help understand
global trends across the design space. Borer and Moore [17] and
Huang [18] performed DSE by using a Latin hypercube DOE to
understand how performance was related to specific propeller and
aerospace engine design characteristics. After selecting and analyz-
ing the samples, they plotted their performance parameters with
their design parameters to understand the global trends and relation-
ships in propeller and engine design variables. They were only
exploring results based on single values. Many have also used
DOEs and fit surrogate models to emulate the response fields of
structural parts [1,2,19,20]. Their methods allowed for real-time
design queries but lacked the ability to relate the design variables
to the global response due to the response being represented by
fields instead of single values.

2.2 Principal Component Analysis. Principal component
analysis is a spectral method which creates a reduced-order model
from data with a large number of dimensions while retaining as
much information as possible [9,21]. It finds the orthogonal varia-
tions, or PCs, which explain the most variation in the data.
Because they are orthogonal, each PC is independent from one
another. By using only a few PCs which explain the most variation,
the data can be more quickly analyzed and understood. Originally
developed for statistics, it is used in other fields, often by different
names and with slight variations. Despite these differences, the gov-
erning principles are the same. This research followed the basic
method presented by Jolliffe and Cadima [9]. PCA is used in aero-
space engineering for many reasons, including real-time analysis,
data size reduction, control of the tradeoff between error and com-
putation cost, and improved understanding of characteristics in the
data [22]. Hajikolaei and Wang used PCA to reduce high-
dimensional design spaces to design spaces of lower dimensions
[23]. They found that by using just a few PCs, they could recon-
struct the results from the original high-dimensional space with
less than 5% relative average absolute error. This low error provides
confidence that just the first few PCs indicate meaningful variations
through the design space.
Principal component analysis has been applied to better under-

stand and explore design spaces based on flow fields, heat transfer,
and geometric tolerances of compressor blades, turbine blades, and
other parts. [3,24,25]. Blanc et al. used PCA to reduce the set of
nodal temperatures on a turbine blade finite element model to a
small set of PCs [24]. These represented the orthogonal variations
of the temperature field on the blade. The full temperature field
was a linear combination of the PCs with their respective scores.
The PCs provided a better understanding of the characteristics of
this temperature field. Spencer et al. used PCs to understand
unique characteristics about flow fields [25]. They were able to
better understand specific flow characteristics and relate them to
the simulation inlet conditions. Brown et al. used PCA to get geo-
metric variations in as-manufactured compressor blades and used
the scores to emulate blade mode shapes and frequencies [26].
Using the PC scores as inputs to the model allowed them to
predict how changes in geometric variation affected the frequencies
and modes. Yan and Ballu compared methods to understand the
spatial variation of parts [21]. They found that among these
methods, PCA performed the best at displaying and understanding
the spatial variations of manufacturing defects. These studies used
PCA as an analysis tool to better understand flow and temperature
characteristics. The present research shows how similar PCA
methods may be used as a DSE tool when coupled with methods
which relate the design variables to PCs.

3 Method
Principal component analysis was used to develop methods to

understand variations in the von Mises stress of compressor blade
design spaces. This allowed global trends to be discovered when
exploring result fields. The tested design spaces were made up of
various combinations of the design variables shown in Table 1
for the transonic Purdue compressor blade. The table is made up
of nine design variables in which the first and second columns
have the names and symbols, respectively, of the design variables.
The third column gives the range that each variable may deviate
from its nominal value. Methods similar to Blanc et al., as described
in the background, were applied to reduce the nodal results for
sampled designs into the PCs [24]. These nodal results, which
together represented the spatial distribution of von Mises stress in
the samples, were reduced into PCs which described variations of
spatial stress distribution among those samples. The spatial distribu-
tions describe how the stress varies over the surface of the blade.
The PCs describe how that spatial distribution varies across the
design space. This research, however, coupled nodal von Mises
stress and nodal coordinates together in PCA. These PCs

Table 1 Set of possible design variables used for this research

Design variable Symbol Range

Height H ± 10% of Nom. H
Ave. radius Ro ±10% of Nom. Ro

Root chord CR ±10% of Nom. CR

Tip chord CT ±10% of Nom. CT

Sweep S ±10% of Nom. CT

Lean L ±10% of Nom. CT

Angle α ±20 deg of Nom. Α
Rotation speed N ±10% of Nom. N
Ave. pressure P ±10% of Nom. P

Note: The ranges for these variables were based on the relationship to a
nominal value of the geometry.
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represented the orthogonal variations which coupled stress and
geometry variations present among the samples. The orthogonality
of the PCs means that variations are independent of each other such
that a change in the score of one PC does not necessitate the change
in the score of another PC. This property is helpful when exploring
the design space and isolating the effect of design variables upon the
stress of the blade. The full spatial stress field and geometry for a
sample in the design space could be reconstructed by a linear com-
bination of the PCs.
The general workflow to create the data sets and model is shown

in Fig. 1 where rectangles represent numerical processes and cylin-
ders represent data. To train the model, data sets for the stresses and
coordinates of each node on the finite element model were obtained
for a number of design variations from the following steps. The first
step was to choose which design space to explore and then select
samples from that design space for simulation. This required select-
ing the design variables and creating a design of experiments spec-
ifying the designs to sample. Latin hyper-sampling with a maximin
criterion was used to select samples spread across the design space.
Then, a finite element model was mesh morphed to match the
designs. This mesh morph was performed to keep the nodes in
the same location, relative to the geometry, among all of the
samples, which was necessary so that the stress at each point on
the part could be recorded for each sample. The finite element
model of the transonic Purdue compressor blade used in this
study had 25,000 nodes with a fixed constraint at the blade root,
a uniform pressure load, P, applied to the pressure surface, and a

rotational load, N. Next, FEA was used to solve for the stresses
of the finite element model. Upon finishing FEA, the stress and
location of each node were saved into a data set. The data sets
used in this research contained stresses and coordinates for
25,000 nodes and up to 100 samples. The stresses had values up
to 72 ksi, with an average near 15 ksi. The coordinates had values
between 0 and 6 in.

3.1 Principal Component Analysis. The stress and coordi-
nate data at the nodes were reduced through PCA. While the PCs
of the stress show the variation of the stress through the design
space, the PCs of the coordinates were used to relate stress varia-
tions to geometric variations. The reduction was performed on the
data matrix, X, shown in Eq. (1) and assembled as shown in
Fig. 2. Each of n rows in the matrix represented a finite element
model from one sample. The columns, of which there were p, rep-
resented the nodes of the finite element model. The first quarter of
the columns were stresses at the nodes and the remaining columns
were coordinates at the nodes. This meant that p was equal to four
times the number of nodes, m. For these tests, m was 25,000 and n
was between 50 and 100. Only nodes on the surface of the finite
element model were used to decrease the computation while retain-
ing all visible node information useful in design space exploration.
Common practice for the structural design of compressor blades
only considers stress on the surface

X − �x = USV = AV (1)

The PCA method used to decompose the data matrix is thor-
oughly explained by Jolliffe and Cadima [9]. This research centered
the data by subtracting the column means, �x. The result of PCA on
the data matrix was twofold. First, a matrix, V, containing the PCs
as rows. Next, a matrix, U, and a diagonal matrix, S. When these
two latter matrices were multiplied, they return a matrix, A, repre-
senting the scores of each PC for each sample as shown in Fig. 3.
PCA finds the matrices A and V that satisfy Eq. (1). A reverse trans-
form may be used to obtain the nodal stress and coordinate data, x,
for a design. This is shown in Eq. (2) where a is a vector containing
a single score for each PC

x = aV + �x (2)

3.2 Two-Point Correlation. The two-point correlation was
performed between the design variables and PC scores. The corre-
lation for every combination of PC and design variable was
obtained by Eq. (3). In this equation, di is a vector of design variable
values for the ith design variable, and pcj is a vector of PC scores for
the jth PC. The elements in the vectors are from the samples used in

Fig. 1 Flowchart for PCA of finite element models. Rectangular
boxes are processes while cylinders represent data.

Fig. 2 The (n, p) data matrix, X. Each row was a unique finite element model sample, of which there
were n. The columns, of which there were p, represented the m nodes on the finite element model.
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the PCA. The value of the correlation between the ith design vari-
able and the jth PC is ci,j and is used to understand the relationship
between that design variable and PC. Higher correlation values indi-
cate a better relationship between the variable and PC

ci,j = di · pcj (3)

4 Results
Several design spaces of the transonic Purdue compressor blade

were tested to show how two-point correlation and stress and geom-
etry coupling improve DSE. The first few PCs and mean stress from
a design space with all nine design variables are shown in Fig. 4.
The number of samples, n, was 100 in this example. The upper
color scale in the figure is for the stress in Fig. 4(a) and uses the
standard color palette in understanding the stress distribution for
FEA post processing. Figures 4(b)–4(d ) use the lower color scale
in the figure to show the stress variation of the PCs. Red shows
the increase of stress and blue shows decrease while white shows
no variation. Each PC in the figure shows normalized stress varia-
tion obtained by dividing the variation by the maximum absolute
stress variation of that PC. Each PC is normalized to its own vari-
ation so that each PC may be clearly seen and understood. All
other PC figures will use this same scale. The stress contours for
any design within the nine-dimensional design space may be recon-
structed by a linear combination of these PCs and the mean stress.
The scores associated with each design indicate the coefficient for
the linear combination. The figure shows the pressure surface of
the blade with the leading edge of the blade on the right. The
mean stress profile among the samples, shown in Fig. 4(a), shows
the highest stress of about 34,500 psi at the bottom corners of the
blade and high stress in the center of the blade reaching up to
about 25,000 psi. PC-1 in Fig. 4(b) shows a stress increase at the
trailing and leading edge, especially at the bottom stress concentra-
tors. It also has decreased stress in the upper right and lower left
regions of the blade. PC-2 in Fig. 4(c) displays an area of large
stress increase mid-way between the leading and trailing edges
from the bottom to about 60% up the blade with gradual reduced
variation away from this region. It also shows a decrease in stress
along the leading and trailing edges. PC-3 in Fig. 4(d ) shows alter-
nating increase and decrease along the chord of the blade.
The explained variance, or percent of total variation in the data

each PC describes, decreases with each consecutive PC. This is
shown with a scree plot in Fig. 5 where bars are the explained
variance of each PC and the dashed line is the cumulative explained
variation. Figure 5 shows, with the height of the left-most bar, that
PC-1 explains close to 70% of the variation in the stress contours
across the nine variable design space. This is followed by 20%

with PC-2 while the others are less than 10%. The first three PCs
explain about 95% of the variation among the samples.

4.1 Low-Dimensional Relationships. To use the PCs as a
DSE tool, a designer must understand the relationship between
the PC scores and the design variables. For design spaces with

Fig. 3 The (n, q) PC matrix, A. Each row was one of n samples.
Each column was a PC, of which there were q.

(a) Mean Stress, x̄ (b) PC-1

(c) PC-2 (d ) PC-3

Fig. 4 Mean stress and three PCs for the design space of nine
variables in Table 1. Image (a) is scaled typical to FEA, using
the upper color scale with units of psi. Images (b)–(d ) are PCs
which represent normalized stress variation and use the lower
color scale. The variations are normalized by dividing each
nodes value by the maximum absolute stress variation.

Fig. 5 Scree plot of PCs explaining 99.9% of variation in the
design space of nine variables in Table 1. Bars are each PC
explained variance and dashed line is cumulative.
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one variable, every sample’s PC scores can be plotted against the
variable as shown in Fig. 6. This shows the PC scores for the
Purdue blade with a design space which only varies CR and
where the number of samples, n, was 50. As this variable increases,
the score of PC-1 increases significantly. This means that the vari-
ation of stress shown in Fig. 7(a) is increased in the full stress field
of the design as CR increases. While the score of PC-2 increases in
either direction as CR moves away from a value of one, this change
is much smaller than that of PC-1. The amount each PC score may
vary in the design space is related to the explained variance of the
PC. Over this design space, PC-1 explains most of the variation
causing its score to change more than the other PCs. According
to Fig. 6, as CR moves away from a value of 1.0, the full stress
profile of the blade changes in small amounts according to the var-
iation shown with PC-2 in Fig. 7(b). Using this figure and Fig. 6, a
designer can know how changing CR increases or decreases the
stress at the regions described by the PCs.
Design spaces with two variables can use three-dimensional

plots to show the scores across the design space. Figure 8 is
similar to Fig. 6 but extended to three dimensions to allow two
design variables. Because of the interaction between design vari-
ables, the scores do not line up as nicely with respect to any one
design variable as in Fig. 6. Plotting the scores against only one
dimension shows more noise and obscures the effect of other vari-
able on the score.
Figure 8(a) shows a three-dimensional plot from the α-axis. The

number of samples, n, for this example was 100. This perspective
shows that PC-1 decreases with increasing α and PC-2 increases

as α is moved away from zero. As α increases from −20 to about
−5, the contribution of PC-1 and PC-2 to the stress distribution
decreases. As α increases beyond −5, PC-1 continues to decrease
while PC-2 increases. Because PC-3 has no noticeable trend
across the range of α, this design variable can likely be changed
without influencing that PC. Figure 8(b) shows the plot from the
view of the CT axis. Due to the larger scatter of data in PC-1 and
PC-2, the image shows that they do not correlate as much with
CT as they do with α. The scores for PC-3 exhibit a tighter grouping
with respect to this variable than with α. This shows that this vari-
able correlates more with CT than with α. As such plots are used
interactively, designers can view the plot from different perspec-
tives to understand how PC scores change across the design space
of two design variables. This can help them know which design var-
iables to change and which regions of the design space to explore to
reduce the stress at areas of the blade indicated by the PCs.

4.2 High-Dimensional Relationships. Understanding these
relationships when a design space has more than two variables is
more difficult. Plots similar to Figs. 6 and 8 can be created if the
designer can find one or two design variables which have the

-
-

R

Fig. 6 Scores for all PCs explaining 99.9% of the variation
across a design space of CR

(a) (b)

Fig. 7 First two PCs over a design space of CR: (a) PC-1 and
(b) PC-2

(a)

(b)

Fig. 8 Scores for the first three PCs of the variation across a
design space of CT and α: (a) scores for PCs from α axis and
(b) scores for PCs from CT axis
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greatest influence on the PC scores. Discovering these variables is
difficult and there may not be only two which clearly relate to the
PC scores. This section discusses two novel methods to find the var-
iables which most relate to the PC scores.

4.3 Two-Point Correlation. The first method applies a two-
point correlation to relate the design variables to the PCs for DSE
of compressor blades. Figure 9 shows correlation scores with PCs
along the x-axis, and Fig. 10 shows scores with design variables
along the x-axis. These figures use the same design space and train-
ing samples discussed with Fig. 4. Both figures show a correlation
between the PCs and the design variables but with different group-
ings. It is more intuitive to find which variables relate to each PC in
Fig. 9 and more intuitive to find which PCs relate to the design var-
iable in Fig. 10. L is shown to have the largest effect on PC-1 in
Fig. 9. CR has the next largest effect upon PC-1, but its influence
upon the component is much less than L. While PC-2 does have
some correlation with L, it does not have a single design variable
with which it correlates significantly more than the others.
Figure 9 shows the correlation with L and multiple PCs, but
reading and comparing the correlations of multiple PCs with L in
the figure can be difficult. Figure 10 helps visualize the correlation
better from this view point. This shows that as L is changed, there is
a significant change in PC-2 but not as much as PC-1.

4.4 Stress and Geometry Coupling. The second method to
understand the relationship between the PCs of the stress and the
design variables is to consider the geometric portion of the PCs in
a stress and geometry coupled PCA. Because the node locations
were coupled with the node stress for PCA, the PCs contain varia-
tions not only of stress but also of geometry. However, because the
magnitude of the values which represent the stress are several orders
of magnitude greater than the values which represent the geometry,
the PCA is weighted toward the stress. The stress portions of the
PCs in the coupled analysis are nearly identical to the stress compo-
nents when stress and location are segregated. The geometric por-
tions of the coupled PCs are only the geometric variations which
align with the stress variations. Figure 4 shows only the stress
portion of the PCs contoured onto a blade of nominal geometry.
The geometric portion of the component, however, may also be
graphically displayed along with the stress contour. It is easier to
understand how the design variables relate to the geometric varia-
tions because the variables directly control the geometry. These
geometric portions of the PC can be used to know which design var-
iables corresponded to the PCs.

Figure 11 displays the first four PCs of the Purdue blade with the
nine-dimensional design space. The mesh is the nominal blade
geometry while the solid, contoured geometry shows the geometric
variation. The colors still represent the normalized stress portion of
the PCs. Figure 11(a) shows that PC-1 has a geometric variation
which includes mostly L. This is determined by visual inspection.
The solid geometry leans back from the mesh perpendicular to
the blade faces. This is how L changes the geometry. While there
is geometric variation shown for PC-2 in Fig. 11(b), no single
design variable from Table 1 describes the majority of this variation.
PC-3 and PC-4 show twist of the solid geometry around its vertical
axis. This twist is caused by a change in α. These all agree with the
two-point correlations shown in Fig. 9. This method, however, also
provides an indication to directionality that the two-point correla-
tion does not. Figure 11 shows that the score of PC-1 increases
with negative L. This means that as L is changed such that the
blade leans back away from nominal the stress will change by an
increase of the variation described by PC-1. Figure 9 only shows
that L is related to PC-1, but does not show the direction the rela-
tionship. The two-point correlation method, however, also works
for correlations to the design variables which do not change geom-
etry such as N and P. The stress and geometry coupling method
would not capture these correlations.

5 Discussion
This discussion shows how to use the PC-based methods to

choose which design variables and regions of the design space
should be explored to change the blade stress distribution. The
process for using these methods is outlined as shown in Fig. 12,
and then, an example is used to show each step of the process in
detail. This example uses nine design variables and 100 samples.
This example will show that these methods help improve the under-
standing of the structural design space by showing the effect of spe-
cific variables on the stress distribution of the blades.

5.1 Process. The process in Fig. 12 is based on understanding
the relationship between the design variables and the PCs. First,
after reviewing the stress distribution for a specific design,
regions of the blade are selected based on where the designer
wishes to explore how to change the stress and the resulting
effects. Second, the PCs which influence stress at the desired
regions are selected. Because the PCs show stress contour
changes through the design space, changing the score of a given
PC will change the stress as described by the PC. The explained var-
iance, like that shown in Fig. 5, may also be used in this step. Using

Fig. 9 Correlation scores for the first four PCs of the nine-
dimensional design space. PCs are along the x-axis while the
design variables are colored bars.

Fig. 10 Correlation scores for the first four PCs of the nine-
dimensional design space. Design variables are along the
x-axis while the PCs are bars.
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PCs with higher explained variance will have the greatest influence
on the stress. Third, the design variables which relate to the selected
PCs are chosen. This is done by using the correlations or stress and
geometry coupling methods described in Secs. 3 and 4. Fourth, the
relationship between the selected design variables and PCs is dis-
covered. The correlations and coupling, from the third step, indicate
a relationship between design variables and changes of stress
described by the PC. Plots, such as those described in Figs. 6 and
8, may be used to understand how they are related. Lastly, once
an understanding of how the design variable changes the stress is
determined, the design change is made to change the stress as
desired in step one. The effects of this change are observed to
improve the understanding of how the design variables change
the stress and how stress changes at specific regions affects stress
at other regions.

5.2 Example. An example of the process is given using
Fig. 13. The von Mises stress for a nominal design is shown in
Fig. 13(a). Most of the stress at this design is below 10,000 psi;
however, the stress at the bottom corners is greater than
30,000 psi. For step one in Fig. 12, it is desired to explore how to
reduce the stress at the bottom corners to below 20,000 psi and
the resulting effects of those changes. Second, the PCs from the
design space in Fig. 4 are used. Figure 4(b) shows that an increase
in the score of PC-1 increases the stress at the bottom corners.
Figure 4(c) shows that an increase in the score of PC-2 decreases
the stress at the bottom corners. Figure 4(d ) shows that an increase
in the score of PC-3 increases the stress at the bottom corners, but
this PC also shows a decrease in stress very near the bottom left
corner for the same increase of score. From these PCs, it is deter-
mined that the score of PC-1 should decrease and the score of
PC-2 should increase. Figure 5 shows that PC-1 and PC-2 explain
about 70% and 20%, respectively, of the stress variation through
the design space. This means that using variables which relate to
the scores PC-1 is likely to achieve greater stress change than
those variables which relate to the scores of PC-2.
Step three requires finding design parameters which relate to

PC-1 and PC-2. Figure 9 shows that PC-1 is mostly influenced by
L. Therefore, L should be used to change the stress. Figure 9 also
shows that there is no design variable which correlates with PC-2
significantly more than other variables. Therefore, no additional
variables will be used for this iteration of the process. Similar con-
clusions may also have been obtained by using the stress and geom-
etry coupling in Fig. 11 instead of the correlations in Fig. 9. Step
four finds the relationship between L and all PCs which relate to
L. Figure 10 shows that the only significant correlations with L
are PC-1 and PC-2. Figure 14 shows the scores of these PCs
across L. A value of 0.15 is chosen for L because the score of
PC-1 is at a minimum and the score of PC-2 is close to a
maximum. The fifth step is to change the design and check the solu-
tion. Figure 13(b) shows that the stress at the bottom corners was
decreased from greater than 30,000 psi to less than 10,000 psi.
Through this process, the designer learned that L may be used to
change the stress at the bottom corners of the blade. The effect of
changing L from the nominal design also increased the stress to
greater than 30,000 psi at the center of the blade.
To gain more precise influence and understanding of the stress,

more iterations of this process may be performed which explore
using design variables not selected in previous iterations. Exploring
L successfully decreased the stress at the bottom corners. However,
because an increase in the score of PC-2 also increased the stress at
the center of the blade from less than 10,000 psi to greater than
30,000 psi, it may be desired to further explore the design space.
The process is begun again by choosing to explore how to reduce
stress at the center of the blade and the resulting effects. PC-2,
from Fig. 4(c), is chosen for step two because it describes a
change in stress at the center of the blade. It is desired to decrease
the score of PC-2 without a significant increase in the score of PC-1
in Fig. 4(b). Steps three and four are more difficult with subsequent

Fig. 12 Process for using the relationship between PCs and
design variables to change stress

(a) (b)

(c) (d )

Fig. 11 First four PCs with geometric variation over the design
space of all nine design variables shown in Table 1. Mesh shows
nominal geometry. The displacements of the geometry are
scaled in each image such that the shape of the variation is
visible: (a) PC-1, (b) PC-2, (c) PC-3, and (d ) PC-4.

Journal of Computing and Information Science in Engineering DECEMBER 2020, Vol. 20 / 061014-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/20/6/061014/6548696/jcise_20_6_061014.pdf?casa_token=VC
PciC

M
U

YyoAAAAA:_4M
R

Tm
m

R
LFsW

YU
N

b-Sw
SC

G
YU

Q
AFoZ4aR

O
TD

aLH
G

ZvZxC
Ag_ZFtD

G
H

eVzew
Q

sW
aVVL0W

G
G

ig by Brigham
 Young U

niversity user on 15 M
ay 2021



iterations. Changing the stress is more challenging when the vari-
ables which correlate to a PC have close to the same or greater cor-
relation with other PCs as well. For step three, Fig. 9 shows that any
variable that has significant correlation with PC-2 also has signifi-
cant correlation with PC-1. This suggests that multiple variables
need to be investigated.
The next variable for this example will be CR. Figure 10 shows

that only PC-1 and PC-2 have significant correlations with CR.
For step four, Fig. 15 shows how the PC scores vary across CR

and L. This plot shows a surface which is fitted to the samples
across these variables with a black line indicating where L equals
0.15 on the surface. Because L was set to 0.15, any change in CR

should result in the scores following these lines. Figure 15 shows
that changing CR at this value of L will not result in a significant
change of score for PC-1 or PC-2. Using CR will not likely help
achieve a reduction in stress at the middle of the blade. Next, the
process returns to step three and N is chosen as the design variable.
In step four, Fig. 16 shows that a decrease of N, where L equals
0.15, will decrease the score of both PC-1 and PC-2. This will
decrease the stress center of the blade due to PC-2. Decreasing
the score of PC-2 would also increase stress at the bottom edges,
but because the score PC-1 also decreases, this effect should be can-
celed out. For the fifth step in this iteration of the design process, N
is changed to a value of 1.1×106. This value is chosen because
Fig. 16 indicates that the scores PC-2 and PC-1 are close to their
minimums for L equals 0.15. Figure 13(c) shows that with a new

design of increased L and decreased N, stress was reduced to
about 20,000 in the center of the blade without also increasing
the stress above 10,000 at the bottom corners. This example has
shown how using the methods which discover the relationship
between the PCs and the design variables can assist in exploring
the design space, can increase the understanding of the design
space and can be used to achieve design objectives.

5.3 Real-Time Design Exploration. The methods applied
and developed in this research help designers know which vari-
ables and regions of the design space should be explored for
desired structural results. As shown through the example, the
process may take a few iterations to find a satisfactory design.
These methods could be applied with real-time DSE as done by
Bunnell et al. [1] to further improve DSE. The exercise shown
in Fig. 13 provides guidance to indicate which variables to
explore in large design spaces. Fine tuning a design around a
given region of the design space may require many iterations. A
desired result can be quickly achieved by using real-time DSE
to quickly search regions of the design space indicated by the
methods described in this paper.

(a) (b) (c)

Fig. 13 DSE of the Purdue compressor blade with the nine-dimensional design space using the design
process described in Fig. 12. The von Mises stress is shown for three designs. Each uses the given color
bar with units of psi. Any stress above 30,000 psi is shown as red and any stress below 10,000 psi is shown
as blue: (a) nominal design, (b) increased L, and (c) increased L, and decreased N.

Fig. 14 The scores for the first two PCs with respect to L in the
nine-dimensional design space

Fig. 15 The scores for the first two PCs with respect to CR in the
nine-dimensional design space
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6 Conclusion
This research used PCA to reduce structural results from FEA

into PCs describing the structural variation of compressor blades
across design spaces. Two methods were applied which related
the design variables to PCs. These methods allowed the PCs to be
used as a DSE tool by indicating which variables and regions of
the design space should be explored to changes at specific regions
of the blade and the effect of those changes. The two-point correla-
tion, an existing method, was applied to the design variables and the
PC scores. This correlation indicated the design variables which had
the greatest influence upon each PC. It was shown how these corre-
lations can guide DSE and find the design variables which need to
be changed to best influence the structural results. The geometric
coupling method was developed and applied to relate variations
in stress directly to variations in the geometry of the compressor.
Like the correlation method, this method indicated which design
variables should be changed to achieve desire structural results.
The geometric coupling method also provided an indication to the
direction the design variables should be changed. These methods
performed well in high-dimensional design spaces that are
common in turbomachinery compressor blade design.
The methods presented in this paper should be used when per-

forming structural design exploration based on finite element anal-
ysis. A DOE is used to select a set of samples distributed globally
through the design space. This research found useful exploration
with relatively few samples, i.e., 100 when using nine design vari-
ables. FEA is then performed for the sampled designs to obtain the
with the structural response and coordinates which will be explored.
The results from FEA need to be represented on a grid which is
common among all of the samples in order to keep the nodes in
the same location relative to the geometry. This research accom-
plished a common grid representation with mesh morphing [1].
PCA should then be performed as described in Sec. 3. The PCs
describe the variation of the structural response contours throughout
the design spaces. These are used to understand how the structural
response may be changed with the used design variables. PCs which
describe more variance allow more change in the structural results.
This research found the first two or three PCs explained more than
95% of the variation with tests that included nine design variables.
If a desired change is not obtainable, other variables should be used.
This will change the PCs and the amount of variation each one
describes. The scores of the PCs can then be related to the design
variables to understand the effect of the variables on the structural

response. Either two-point correlation or stress and geometry cou-
pling may be used to relate the designs. Once the understanding
between variables and structural response is known, a new design
may be wisely selected and analyzed.
As design spaces for compressor blades become more complex,

better methods are needed to more fully understand them. This
research developed and applied methods that use PCA of the
design space to show variations which are not easily understood
otherwise. These methods provide guides to change the design var-
iables by which the stress is better understood and controlled. The
improved understanding provided by these methods can help
meet design objectives and decrease the computation cost needed
to achieve them.
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